

Mathematics Assessment Exam

Algebra

- 1. Compute this complex number operation (3 + 4i)(5 + 3i). Which of the following is the correct result expressed in the form a + bi?
 - A. 15 + 29i
 - $\mathsf{B.} \ 15+12i$
 - C. 3 + 29i
 - D. 8 + 16i
- 2. Which of the following properly uses the hierarchy of operations?
 - A. $12 \div 5 2 + 3 = 12 \div (5 2) + 3 = 12 \div 3 + 3 = 7$ B. $20 - 5 \cdot 2 + 4 = 15 \cdot 2 + 4 = 34$
 - C. $20 \div 5 2 \cdot 4 = 4 2 \cdot 4 = 8$
 - D. $20 \div 5 2 \cdot 3 = 4 6 = -2$
- 3. Two buses leave a station at intervals of 6 minutes and 10 minutes, respectively. If two buses leave together at 9:00 AM, when will two buses leave the station together again?
 - A. 9:16 AM
 - B. 9:30 AM
 - C. 10:20 AM
 - D. 9:10 AM
- 4. What is the value of k in the following expression:

$$\frac{32^2 \cdot 64 \cdot 4^4}{8^2 \cdot \sqrt{256} \cdot 16^2} = 2^k$$

- A. k = 2
- B. k = 4
- C. k = 6
- D. None of the other solutions are correct
- 5. Given the following intervals $A = \{x \in \mathbb{R} \mid x > 3\}$, B = [1, 6], what is the value of the intersection of A and B, $A \cap B$? Hint: Intersection means all the points both in A and B.
 - A. (3, 6)
 - B. (3,6]
 - C. [1,3)
 - D. $[1,\infty)$
- 6. A polynomial P(x) has degree 3, leading coefficient 1 and its roots are $\{1, 2, 5\}$. What is the sum of all its coefficients?
 - A. 8 B. 1 C. -8
 - D. 0

Linear Algebra

- 7. Consider the vectors $\vec{u} = (1, 2, 3)$ and $\vec{v} = 2\hat{i} 2\hat{j} + 4\hat{k}$. What statement is true about the vector $\vec{w} = 2\vec{u} \hat{v}$?
 - A. The length of the vector is $\sqrt{12}$.
 - B. The length of the vector $\sqrt{160}$.
 - C. Vector (0, 12, 20) is perpendicular to \vec{w} .
 - D. Vector (5, 2, -6) is perpendicular to \vec{w} .
- 8. Consider the following matrix operations. Choose the correct statement.
 - A. Adding a 2×2 matrix W with another 2×2 matrix Z results in a 4×4 matrix W + Z.
 - B. Multiplying a 4×3 matrix L with a 3×2 matrix M results in a 4×2 matrix LM.
 - C. Given two matrices X and Y, the result of XY is always the same as YX.
 - D. Adding a 3×4 matrix J with a 4×3 matrix K results in a 3×3 matrix JK.
- 9. Consider the system of linear equations in three variables x, y, and z:

$$\begin{cases} x + 2y + 3z &= 9\\ x - y &= 0\\ 4x + y - 2z &= 1 \end{cases}$$

What is the value of $x \cdot y \cdot z$?

A. 3
B. 2
C. 1
D. 0

Calculus

10. What is the domain of the function $g(x) = \frac{x^2-4}{e^x-1}$?

- A. $[1, +\infty)$
- B. ℝ
- C. All \mathbb{R} except $x = \{1\}$
- D. All \mathbb{R} except $x = \{0\}$
- 11. Given $f(x) = \frac{\sin(x-1)}{x^2-x}$, the vertical asymptotes of f are:
 - A. x = 0
 - B. x = -1
 - C. x = 1 and x = 0
 - D. None of the other solutions are correct
- 12. What is the derivative of this function?

 $g(x) = 2\cos^2(3x)$

- A. $g'(x) = 4\cos(3x)\sin(3x)$
- B. $g'(x) = -4\cos(3x)$
- C. $g'(x) = -12\cos(3x)\sin(3x)$
- D. None of the other solutions are correct

13. What are the points x at which the function f attains a global maximum, where f is the function $f(x) = -x^2 e^x?$

A. x = -2B. x = 2C. x = 1D. x = 0

14. What is the solution of the following definite integral

$$\int_0^{\pi} x \cos 2x$$

A. 0 B. $\pi^2/4$ C. 1 D. None of the other solutions are correct

Geometry

- 15. Let $\vec{a} = (4, 6, 2)$ and let $\vec{b} = (1, 0, -2)$ be two vectors $\in \mathbb{R}^3$. Which of these vectors is perpendicular to both \vec{a} and \vec{b} ?
 - A. (3, 4, 2)B. (-12, 10, -3)C. (-6, 5, -3)D. (4, 2, 6)
- 16. Find the equation of the plane that passes through the point (1, 1, 1) and is perpendicular to the vector $\vec{v} = (1, -1, 3)$.

A. x + y + z = 7B. x - y + 3z = 3C. x - y + 3z = -1D. -x + y - 3z = 1

- 17. Compute the area of a right triangle which one of its angles is $\alpha = \pi/3$ and the hypotenuse measures 4.
 - A. $\sqrt{3}$ B. $2\sqrt{3}$ C. 4 D. 12

Probability and Statistics

- 18. The mean temperature over 20 days was 15° C. The next 10 days the mean temperature was 30° C. What is the mean over those 30 days?
 - A. 15° C B. 18° C
 - C. 20° C
 - D. 22.5° C

- 19. Consider two events, A and B. Given that P(A) = 0.4 and P(B) = 0.3, which of the following is impossible?
 - A. $P(A \cap B) = P(A) \cdot P(B)$
 - $\mathsf{B.}\ P(A \cap B) = 0.3$
 - $\mathsf{C.}\ P(A\cup B)=0.3$
 - D. $P(A \cap B) = 0$
- 20. Which of the following statements is true about a normal distribution N(0, 1)?
 - A. Its density function is symmetrical with respect to $\mu = 1$
 - B. P(X = 0) = 1
 - C. P(X < 0) = 0.5
 - D. P(X < 1) = 0

Answer Key

Algebra

- Question 1: C. 3 + 29i
- Question 2: D. $20 \div 5 2 \cdot 3 = -2$
- Question 3: B. 9 : 30 AM
- Question 4: C. k = 6
- Question 5: B. (3, 6]
- \cdot Question 6: D. 0

Linear Algebra

- + Question 7: D. Vector (5,2,-6) is perpendicular to $ec{w}$
- Question 8: B. Multiplying a 4×3 matrix L with a 3×2 matrix M results in a 4×2 matrix LM
- Question 9: B. 2

Calculus

- Question 10: D. All \mathbb{R} except $x = \{0\}$
- Question 11: A. x = 0
- Question 12: C. $-12\cos(3x)\sin(3x)$
- Question 13: D. x = 0
- Question 14: A. 0

Geometry

- + Question 15: C. (-6, 5, -3)
- Question 16: B. x y + 3z = 3
- Question 17: B. $2\sqrt{3}$

Probability and Statistics

- + Question 18: C. 20° C
- + Question 19: C. $P(A \cup B) = 0.3$
- Question 20: C. P(X < 0) = 0.5