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Artificial intelligence (AI) is one of the key technological innovations shaping our 

modern world. The growing availability of digital health data, combined with the 

newest technical advancements in computing and data science, form the perfect 

environment for data-driven, AI-powered medicine to flourish.  

Many of the challenges presented by AI arise from its very foundation, from biases to 

transparency or generalizability. This chapter therefore focuses on presenting the basic 

ideas behind AI algorithms. In particular, it focuses on the different types of learning 

(supervised vs. unsupervised, shallow vs. deep), and discusses some of the most popular 

ways in which AI methods have been applied in healthcare. We then discuss the main 

technological pitfalls, and summarize them into four key questions on transparency, 

overfitting, performance and robustness that AI models with translational ambitions 

should be able to address adequately.  

Finally, AI has the potential to go beyond simple applications, and become one of the key 

tools to connect medical research and clinical practice. We suggest that, if the field 

progresses steadily despite all the complexities, it could become the backbone of a 

knowledge-generating feedback loop between the two.   

 

Reference to this paper should be made as follows:  

Gallego, M., Berman, A., Crispin, M. (2020) “Artificial intelligence in healthcare: A 

technological perspective”, Innovation, Sustainability, and the Future of Healthcare.  

 

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0) License. To view a copy of the license, 

visit https://creativecommons.org/licenses/by-nc-sa/4.0/” 
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Recent advances in digital technologies, computing and data analysis methods have 

triggered the advent of a new data-rich world. In addition, recent years have seen an 

unprecedented growth in the quantity and complexity of quantitative data. In 

biomedicine and healthcare this includes, for example, blood biomarkers, DNA and RNA 

sequencing, digital medical images, electronic health records, or digital recordings from 

a variety of new medical devices.  

One of the critical advancements that have dramatically changed the landscape of data-

driven technologies has been the development of a new generation of machine learning 

algorithms which exhibit cognitive behaviour, broadly called Artificial intelligence (AI). 

AI has the potential to bring a paradigm shift to healthcare, powered by increasing 

availability of healthcare data and rapid progress of analytic techniques [1]. 

There is a growing interest towards the possibility of using AI for patient diagnosis, 

treatment selection and disease tracking in the near future. New-generation algorithms 

are becoming increasingly competent at extracting complex patterns from large amounts 

of data, and using them to make decisions. This, coupled with their ability to improve the 

quality of their prediction over several iterations, makes AI algorithms an attractive tool 

for optimizing medical decisions in healthcare settings based on patient data. 

 

Figure 1. Chart on the uses of AI algorithms in different settings. The use of AI has the 

potential to benefit patient care in hospitals and homes, as well as streamlining the use and 

sharing of relevant medical data between patients and doctors, between different institutions, 

stakeholders, and health systems. 

The use of AI in the clinical setting brings forth a set of technical, logistical, regulatory 

and ethical challenges. Although many of them are general and relevant to all AI 
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applications (for example, data sharing or data privacy), in reality there is a wide variety 

of scenarios and tools, each of which present their own questions and opportunities [2]. 

The relative vagueness and suggestive capacity of the term AI sometimes results in 

unrealistic expectations that are out of reach for current technologies [3]. The aim of this 

chapter is to lay the foundation for the rest of the report by discussing the main types of 

AI algorithms, what they can actually accomplish, and how they are being developed 

within the context of healthcare.  

We first discuss the main ideas behind the most widely used algorithms from a 

computational point of view. Then we discuss the main types of medical scenarios that 

are being targeted by AI techniques and how they could potentially have an impact on 

the patient pathway, giving a broad overview of the specific domains in which there has 

already been progress. Next, we look at the main technological pitfalls, condensing them 

into a concise set of questions that every AI application ought to be able to answer 

adequately. Finally, we discuss how AI can also help to streamline medical research from 

academia into clinical practice. 

 

 

 

 

 

 

 

 

Figure 2. Venn diagram on types or sub-types of AI. Machine learning algorithms can be 

considered as a sub-group within artificial intelligence, while deep learning algorithms are a 

special class of machine learning algorithms.  

Artificial Intelligence is defined as the collection of techniques that confer an artificial 

entity with the ability to perceive the environment and take actions that maximise a 

certain goal [4]. As such, it theoretically encompasses not only the algorithms used for 

decision-making, but also the techniques used for all perceptual and effectual tasks. 

Commonly, however, the term is used as a synecdoche to refer to the learning algorithm 

only. Most of the algorithms used for medical applications are based on Machine 
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Learning (ML) techniques. Machine learning refers to programmes that are able to 

automatically generate rules and discern patterns based on data and experience with the 

aim to achieve a desired objective [5].  

 

Ultimately, machine learning models need to be able to generalize and apply the rules 

they have learnt to new, unseen data. This process is known as “testing” or “validation”, 

and it is crucial to assess whether a model can be used widely or if it has important biases. 

 

Supervised vs. unsupervised learning 

Broadly speaking there are two main types of machine learning algorithm which are 

distinguishable by the way they are trained and the ultimate task they accomplish:  

Supervised learning algorithms are trained by providing a set of examples for which the 

association one wishes the model to discern has been provided as a ground truth that the 

algorithm can learn from. Supervised learning from ground-truth training has proven to 

be highly successful across multiple domains, from automated identification of image 

features to optical text recognition [6]. Algorithms can be further classified into whether 

the task deals with classification into different categories (for example, disease subtypes), 

or regression of a continuous variable (for example, predicting the volume shrinkage of a 

tumour as a result of therapy).  

Supervised learning is highly dependent on the data available for training. If the dataset 

is too small, or the number of input features the algorithm can learn from too large, the 

resulting model may be overfitted. An overfitted model is based on spurious patterns that 

are only relevant for the data it learnt from, therefore becoming unable to generalize. 

This is a common problem that will be discussed in more detail in the next section as it 

can have serious repercussions for healthcare applications. 

Unsupervised learning algorithms are trained without ground truth training examples. 

Instead, these algorithms aim to find separations or clusters in the inputted data based 

on the data’s natural patterns across multiple dimensions. Unsupervised clustering is 

used widely to automatically identify patterns of disease response based on clinically 

relevant features, for example [7].  

A third type of learning method known as reinforcement learning has been receiving 

more attention lately [8]. Reinforcement learning algorithms take sequences of actions 

as input and learn to follow the sequences that maximize a cumulative reward. They have 

been proposed to manage situations such as sepsis or epilectic seizures, among others [9], 

[10].  
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Traditional vs. deep learning 

In addition to the supervised-unsupervised split, another important division within ML 

is the distinction between shallow (or “traditional”) ML and their counterpart, the newer 

deep learning (DL) algorithms. 

Traditional (shallow) ML algorithms are all characterized by having a simpler 

architecture and fewer parameters than DL models. They have the advantage of being 

generally quicker to implement and train than their deep counterparts. Despite their 

speed and relative accessibility, they are not able to learn as complex relationships as 

deep learning models can, rendering them often insufficient for classifying large, 

unstructured data. Despite their limitations, traditional ML approaches remain very 

effective in many domains and have been widely used to great success [11].  

Artificial neural networks, which DL algorithms are based on, are in fact a class of 

traditional ML algorithm that has been used for decades [12]. Artificial neural networks 

are composed of neurons, computational units that provide an activation signal upon 

receiving some input. Neurons are connected such that a neuron’s output becomes 

another one’s input, thus creating a layered network.   

Deep Learning (DL) algorithms are a sub-class of machine learning techniques primarily 

comprising neural networks with large numbers of hidden neuron layers controlled by 

complex architectures with a large number of parameters. DL uses multiple layers in order 

to progressively extract higher level features from the raw input [13].  

One of the most widespread types of Deep Learning algorithms is the Convolutional 

Neural Network (CNN). CNNs are a subtype of Deep Neural Networks that have attracted 

a high level of interest due to the fact that they are extremely well-suited to analysing 

image data, including medical images such as MRI scans, x-rays and histopathologically 

stained tissue images. CNNs have achieved notoriety as some studies have claimed that 

they were able to achieve superior accuracy compared to humans, for example when 

analysing dermatology images for some specific diagnostic purposes [14]. These methods 

still pose unsolved challenges related to overfitting and dataset size restrictions, as deep 

neural networks often rely heavily on a large and robust training dataset. However, 

progress is being made to minimize these challenges [15]. 

In addition to CNNs, a class of DL algorithm that is gaining attention is the Generative 

Adversarial Network (GAN). These algorithms have gained importance in the image 

analysis community due to the fact that they learn to generate new pseudo-data, which 

can be used to augment the data and therefore improve training, or for image-to-image 

translation, among others [16]. 

Finally, DL techniques are also becoming more widespread for Natural Language 

Processing (NLP). These algorithms are used to extract information from large amounts 
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of unstructured data from various textual sources, such as medical records, clinical notes, 

scientific publications, etc. NLP models can generate structured medical data that can in 

turn be used by ML algorithms to aid diagnosis and treatment choices. 

 

AI applications are being developed to tackle most stages of the process of going from 

bench to bedside and beyond. Not all of them will have the same disruptive impact. Some 

may be used as more efficient versions of previously automated technologies, whereas 

others may have the potential of completely changing the patient care pathway.   

Some of the most widely discussed applications include the following:  

Pre-clinical applications. A number of AI systems have been developed to optimize pre-

clinical drug discovery processes, such as DeepBind by the University of Toronto, 

DeepSEA at Princeton, or companies such as BenevolentAI or HealX in the UK. While 

these technologies have the potential to accelerate drug development dramatically, and 

they are a key component of the future of AI-powered biomedicine, they are unlikely to 

affect the patients’ direct experience. This type of application will be discussed in more 

detail in the next section. 

Diagnostic and non-patient-facing clinical applications. The types of tasks that are most 

amenable to AI automation are those based on perceptual recognition. As such, 

disciplines such as radiology, pathology or some aspects of cardiology, where physicians’ 

tasks are to a large extent based on assessing data visually, have received more attention. 

These types of advancements may be key to relieve some of the pressure on physicians 

given workforce shortages, and in some cases to improve the assessments by gaining in 

robustness and quantitative value. In many cases they replace other computational tools, 

and may not affect the patients’ experience directly.  

In radiology a large proportion of the work is based on image analysis by deep neural 

networks, including applications for X-rays, CT, MRI and PET scans, and focus on 

improving image acquisition or reconstruction, automated detection or interpretation of 

findings, image segmentation and registration, reporting and correlation of other data 

sources of interest [17].  Although the field is broad and varied, image modalities with 

large available datasets tend to be the one with more mediatic impact. As an example, 

chest X-rays have been the focus of popular studies by Stanford [18] and Google [19], 

among others [20], [21]. Some of these studies claimed superhuman performance, 

although these claims have received some criticism [22].  

In pathology the work is also dominated by image analysis based on a combination of 

traditional and deep learning approaches to identify and characterize cell and tissue 

features that can help with automatic feature detection and segmentation, as well as 
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more complicated tasks such as disease grading or subtyping [23]. These applications all 

rely on a digital pathology platform, which is still not the norm in most hospitals [24].  

Other popular studies include skin malignancies classification in dermatology [14], [25], 

and the analysis of electrocardiograms [26], [27] for cardiology applications. AI can also 

be used to provide automated and editable ventricle segmentations based on 

conventional cardiac MRI images. This method has currently received clearance from the 

FDA in the United States [28], [29]. In neurology, an AI system has been proposed in 

order to restore the control of movement to a certain extent for quadriplegic patients [30]. 

Patient management and treatment decision applications. There are some AI applications 

that may have a more dramatic impact on patients’ experience, as they affect their 

interaction with human doctors, or rely on the patients disclosing personal data.  

A well-known example is that of chatbots used for symptom checking and triaging, such 

as the UK’s Babylon Chatbot or Sweden’s Aitopya (both covered as case studies in this 

report). These applications are being scrutinized regarding performance, regulation and 

patients’ engagement [31], [32]. Another extreme example is the development of ML 

models to predict the onset of depression from the patient’s Facebook posts [33].  

Many healthcare institutions are transitioning to Electronic Health Records (EHRs): 

digital versions of a patient’s record including medical history, diagnoses, medications, 

treatment plans, immunization dates, allergies, radiology images and laboratory and test 

results [34]. The digitalization enables automation and streamlining of the decision-

making workflow, as well as a more comprehensive treatment personalization strategy 

[35].  

These are only some examples of the large number of applications that are being 

developed, especially in the academic setting. As the technology evolves and the field 

matures, it is likely that new opportunities will arise, at the same time as the attention 

focuses on the most successful avenues found in this initial exploration phase. Overall, 

these developments are affecting the entire pipeline of medical practice: from pre-

clinical research, early detection and diagnosis, through outcome prediction and 

prognosis, to the course of treatment and discharge.  

 

Some of the most important aspects to be assessed during the evaluation of an AI tool for 

practical use will be discussed later on in this same report, within the context of 

regulation. Nevertheless, on a fundamental technical level, all AI algorithms aiming to 

have translational impact should be able to address the following questions. 
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Explainability and transparency: Can the decision process be rationalized? The lack 

of understanding of how AI algorithms work internally is one of the most common 

concerns. This is an active field of research, and various solutions have been proposed in 

different contexts. For example, Class Activation Maps (CAMs) are one of the methods to 

be able to know what the CNN-based models are observing as they train [36]. CAMs enable 

researchers to see which areas of the image were most important for the CNN’s predictive 

process, thereby laying bare any biases or lack of generalizing power in the model.  

Overfitting and biases: Is the training data representative and relevant? Has the 

model been extensively validated on large external datasets? As described 

previously, overfitting is the key problem when working with small datasets. Overfitting 

occurs when a model corresponds too closely to a particular set of data, and may therefore 

fail to predict new observations reliably. Despite the growing availability of medical data, 

it is still an important problem as specific tasks often can only be trained on a small subset 

with the relevant characteristics. To combat overfitting, data splitting techniques such as 

cross-validation can be used, as well as a technique known as data augmentation, 

whereby training data are randomly altered in order to generate a larger training set.  

Performance assessment: Is the performance being compared to a robust ground 

truth? Are the models consistent with the desired specifications? Many AI tools are 

presented as being equal or better than humans at a given task. However, particularly in 

healthcare applications, defining human performance is complex as it can be influenced 

by multiple factors [37]. Using multiple assessments to define the ground truth can help 

[38], with recent radiological studies including assessments from over 100 radiologists 

[39]. In addition, the results should be tested against the list of desired specifications, 

including, for example, fairness [40].  

Robustness and adversarial attacks: Are predictions sensitive to subtle variations 

in the input data? Some ML models, especially deep neural networks, are sensitive to 

small changes in the input data, potentially leading them to produce an entirely different 

prediction [41]. This type of vulnerability can be used to carefully engineer changes in the 

input data to force the system to produce the wrong result [42]. In deep learning, these 

changes could be as subtle as the application of a noisy-looking filter to an image, 

producing alterations that are almost imperceptible to the human eye.  

 

AI has the potential to build on and improve the interaction between biomedical research, 

clinical research and medical practice. 
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Firstly, the constant evolution of new tests, therapies and biomarkers needs a framework 

that enables a rapid assessment of their clinical validity and utility. Here, new digital 

technologies have the opportunity to play a key role: in-silico identification of 

biomarkers can, for example, save a significant amount of resources in the development 

of personalized compound diagnostics, as biomarkers are normally identified late during 

the drug-development process. Additionally, new developments in machine learning 

approaches make it possible for algorithms to scan through databases and published 

literature to help scientists identify targets to then test in a laboratory setting, saving 

time and money while increasing efficacy and probability of success [43]. 

Through NLP algorithms capable of reading and understanding millions of pages, it is 

now also possible to parse content at a completely new scale and speed. Predictive 

analytics applies deep learning algorithms for reading and understanding large amounts 

of data, including scientific articles, clinical trial data, molecular structures, off-target 

prediction, toxicity estimations and more, thereby enabling scientists to develop in-silico 

assays on a large scale while reducing the risk of real-life assays performed in laboratory 

conditions [44], [45]. Additionally, AI has also been successfully used to combine large 

pharmaceutical company datasets and discover previously unidentified drug interactions 

[46]. 

Secondly, research and clinical practice are and will be increasingly compatible. 

Initiatives to aggregate and combine research and clinical data aim to improve all the 

stages of the care pathway: from early detection, to disease management, monitoring and 

follow up. Most of these areas are likely to be the targets of new developments in machine 

learning and big data. Machine learning algorithms on the patient side of the healthcare 

system have the ability to carry out an in-depth, personalized monitoring of the patient 

and to identify prognostic patterns. Coupled with the pre-clinical advances, this could 

effectively create an AI-supported knowledge-generating healthcare system [47]. 
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Figure 3. Chart on the synergies that are currently appearing between research and 

clinical settings, with the aid of AI-enabled capabilities. Multi-platform data obtained by 

healthy individuals and patients alike can be used by ML-based algorithms to aid drug 

development, biomarker identification and accompanying diagnostic development. NLP 

algorithms, in turn, can also be fed information from an extensive body of published literature. 

The ML-enabled approach to disease treatment would create a body of real-time patient data, 

which together with NLP algorithms for therapeutic context, would enable an expansive 

development and use of personalized therapies. 

 

Artificial intelligence advancements in healthcare include a variety of applications, which 

are increasingly relying on heavily parameterized deep learning techniques. The 

proposed tools range from pre-clinical drug discovery assistants all the way to image-

based diagnostics, treatment decision support or follow-up, and therefore may have 

different degrees of impact on patient care pathways. However, all of them are subject to 

the same technical challenges, which we have summarized in four key questions that 

should always be asked: can the decision process be rationalized? Is the training data 

representative and relevant, and has the model been extensively validated on large 

external datasets? Is the performance assessment robust, and are specifications satisfied? 

And finally, are predictions sensitive to subtle variations in the input data? If these and 

other quality criteria are met, and the field manages to make steady progress, it may be 

possible to create eventually a knowledge-generating feedback loop to improve patient 

care through data integration and model development and re-training.  
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