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Across fertility clinics in Europe, artificial intelligence (AI) has sparked hopes that it could 

standardize processes and improve outcomes. In this case study we explore how AI has 

already started to disrupt practice in the fertility lab, review the evidence supporting it, and 

look at how regulators have responded to challenges. Whatever advantages AI will bring to 

the fertility sector, the real yardstick for patients and regulators is whether using algorithms 

increases live birth rates versus standard IVF or not. Yet, often predictive abilities are 

confused for clinical benefit. 

During in-vitro fertilization (IVF), sperm and eggs are mixed in the lab to create embryos. 

Embryologists are tasked with finding the single most viable embryo to ensure the best 

chance of success while minimizing the risk of a multiple birth [1], [2], [3]. Traditionally, 

embryologists remove the embryo from the incubator each day and morphologically assess 

its development under a microscope. Embryo selection in this way is time-consuming, and 

there is room for human error and variation between individual practitioners [4], [5]. In recent 

years, time-lapse imaging (TLI) has been introduced, offering embryologists a continuous 

view of development without disturbing the embryo by taking hundreds of images [6]. This 

has not been shown conclusively to make a difference to live birth rates but has created vast 

amounts of data [7], [8], [9].  

The success of AI in radiology, the centrality of imaging to embryo selection, and hopes to 

increase its consistency with the help of algorithms have created the conditions for AI 

innovation in the fertility sector.  

As early adopters of TLI, private fertility clinic groups across Europe are now investing in AI 

to train algorithms with TLI imaging data to grade embryos. As an example, the Spanish IVI 

group, which is also active in Germany, France, Italy and the UK, is partnering with academics 

to use deep learning for embryo selection. By contrast, UK-based LifeWhisperer claims to only 

require ordinary microscopic images to be dragged and dropped into an online tool and may 

thus become accessible more widely [10], [11]. 

As Table 1 illustrates, AI-powered embryo software is typically a deep learning algorithm 

using a variety of inputs to produce a single success metric. The algorithms have usually been 

trained to predict outcomes based on a dataset of embryo images. The Early Embryo Viability 

Assessment (Eeva) test, for example, was developed using data from 373 women and 3328 

embryos and validated on an independent data set for consistency of grading results [12]. 

Table 1 also shows manufacturers of TLI equipment like Merck Serono and Vitrolife being 

active in the AI-software space too. There is a variety of software-hardware integrations, 

ranging from the Eeva test being directly sold with a TLI incubator to LifeWhisperer which 

does not require TLI at all. 
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Table 1. The variety of algorithmic embryo selection software in use and development 

 Name of AI 

application 

Machine learning 

method (type of AI) 

Input data & 

parameters 

Success metric & output Developer / 

distributor 

Available with TLI 

incubator?         

CE marked? 

In
 c

lin
ic

a
l 
u
s
e

 

Early Embryo 
Viability 
Assessment 
(Eeva) test 

Xtend algorithm (deep 
learning, but this is 
not confirmed) [12] 
[13] 

74 parametres 
including cell division 
timing and egg age 
[13] [14, p. 282] 

Potential of embryo to 
reach blastocyst stage, 
displayed in five-tier 
classification system [13] 

Auxogyn (now 
Progyny) / 
Merck Serono 

Yes, included with Geri+ 
(Merck’s TLI incubator) 

[15] 
Yes [16] 

KIDScore (D3 
and D5) and 
Guided 
Annotation tool 

Morphokinetic scoring 
algorithm (deep 
learning); computer 
vision [17] 

Morphokinetic 
variables based on AI-
aided annotation [17] 

Chances of embryo 
implanting successfully, 
scored from 1 to 9.9 [17] 

Vitrolife 
Sold separately but 
requires Embryoscope 
incubator (Vitrolife) 

No 

CAREmaps 
Morphokinetic 
algorithms (unknown 
type of AI) 

Relative time to the 
start of blastulation 
and the duration of 
blastulation (based on 
annotated data) [10] 

Probability of live birth, 
ranked A-D [10] 

CARE Fertility 
(IVF clinic 
group), in-house 

No, but CARE uses 
Embryoscope incubator 
(Vitrolife) [10] 

No (not 
commercially 
distributed) 

In
 d

e
v
e

lo
p
m

e
n
t 

LifeWhisperer 
Unspecified deep 
learning method; 
computer vision [18] 

Day 5 blastocysts 2D 
images taken with 
phase contrast 
microscope (TLI not 
required); 
morphological 
parameters [19] 

Probability of clinical 
pregnancy, displayed in 
percent [11] [19] 

Presagen 
No, LifeWhisperer is 
designed not to require 
TLI equipment 

N/A 

STORK 

Convolutional neural 
network based on 
Google’s Inception 
model, directly using 
GoogLeNet 
architecture (deep 
learning) [20] 

Morphological and 
morphokinetic 
parameters [20] 

Probability of clinical 
pregnancy (binary good 
and poor classification) 
[20] 

Weill Cornell 
University/ IVI 
group (IVF clinic 
group) [20] [21] 

No, but Embryoscope 
was used to train model 
[20] 

N/A 

Ivy 

Feedforward neural 
network with back-
propagation (deep 
learning) [22] 

 

 

Raw time-lapse 
imaging data [22] 

Probability of clinical 
pregnancy (fetal heart 
beat), confidence score 0-
1 [22] 

Virtus Health 
(IVF clinic 
group)/ 
Harrison.AI 
(acquired by 
Vitrolife) [23] 

Potentially in the future, 
as Vitrolife could follow 
Eeva model 

N/A 
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Figure 1. Developing AI-assisted embryo software: Flowchart showing the design and assessment of the STORK algorithm. Source: 

https://www.nature.com/articles/s41746-019-0096-y/figures/1  [20]

https://www.nature.com/articles/s41746-019-0096-y/figures/1


When the Medical Device Regulation (MDR) becomes fully operational across the European 

Union and the United Kingdom in May 2021, software claiming to make pregnancy more likely 

will be regulated as medical devices requiring CE marking [24], [25] [26], [27]. Currently, only 

the Eeva test meets those requirements (see Table 1). Software developed in-house will also 

have to satisfy core criteria, with the relevant UK guidance currently being finalized by the 

Medicines and Healthcare products Regulatory Agency (MHRA).  

The United Kingdom’s fertility regulator, the Human Fertilisation and Embryology Authority 

(HFEA), has a clear stance on optional technologies claiming to improve patients’ chances of 

having a baby, so-called treatment add-ons: clinics should not offer any unproven add-on at 

an extra cost or outside of trials [28]. To be recommended for routine practice, add-ons must 

demonstrate benefit to patient outcomes through high-quality studies. Echoing voices from 

other government bodies, the same yardstick will be applied to any clinical AI tools [29], [30].  

The evidence on patient outcomes is currently lacking, however. While some studies have 

shown AI to successfully predict live births [10], [31], [32], [33], there is insufficient good 

quality evidence to show that using embryo selection software improves live birth rates 

compared to conventional selection by an embryologist [9]. 

Some of the appeal of TLI has been its potential time- and cost-saving advantages for 

embryologists [34], [35]. However, this is not the same as improving clinical outcomes and it 

is unclear why this often leads to patients paying more – despite alleged efficiency gains. 

Involving algorithms in clinical decision-making also comes with a host of legal and ethical 

challenges. The most prominent issues are liability for errors and algorithmic explainability 

[36].  

Regulators have thus begun exploring the impact of AI on their statutory duties such as 

inspections [37], [38]. The HFEA may, for example, probe clinics on how embryologists are 

trained to challenge AI-generated outputs and whether the AI itself is suitable to support 

their decisions [38]. This presents a skill challenge for practitioners and regulators alike but, 

crucially, their duty to ensure patient safety and benefit remains unaffected  [39]. 
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Figure 2. Towards objectivity or false certainty? A circular heatmap showing how the STORK 

algorithm’s binary assessment compares with human embryologists’ grading. Source: 

https://www.nature.com/articles/s41746-019-0096-y/figures/5  

 

Embryology is still not an exact science and often yields surprising results. Some studies on 

TLI, for example, show both an increase in live birth and miscarriages rates [9]. Embryo 

development may thus not fit into a singular algorithmic function. Yet the AI applications we 

identified all reduce their outputs to a sole (even if graded) success indicator. Furthermore, 

they are all deep learning algorithms, which are considered ‘black boxes’ in terms of 

explainability [40], [41], [42].  

By contrast, Google’s Optometrist Algorithm (an AI tool developed to support nuclear fusion 

research), for example, is not programmed to find objective mathematical functions. Instead 

https://www.nature.com/articles/s41746-019-0096-y/figures/5
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– just like when performing an eye test – this tool presents a human operator with two 

alternative settings and a variety of predicted parameters. The operator then makes a 

subjective choice between the alternatives, thereby integrating human intuition and choices 

into the model, which also makes it explainable [43], [44], [45]. This shows that yet other ways 

of using AI in embryology are conceivable, and they may be more appropriate given that 

embryo grading is not an exact science (a low-grade embryo can still result in a live birth). 

Whatever advantages AI innovation will bring to the fertility sector, predictive abilities 

should never be confused with clinical benefit. When patients embark on the often-costly 

fertility treatment journey, their sole aim is to have a healthy child with the least possible 

amount of cycles and complications. Above all, algorithms need to robustly show that they 

deliver improvements on this scale. A more efficient embryo grading technique is only a 

means to an end after all. Like with IVF treatment add-ons, we recognize a danger that 

outsized claims about the benefit of AI are not backed up by the (right) evidence. To keep the 

full range of clinical outcomes in view, including risks such as miscarriages, developers of 

pioneering algorithms may have to rely on a more established method to demonstrate its 

benefit to patients and European health systems: the randomized control trial. 
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