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Data set releases are the most convenient way to make data available for secondary use: 

in principle, they allow analysts to carry out any data analysis task (e.g., exploratory data 

analysis). However, data set releases are a great threat to privacy. This is the issue that 

privacy preserving data publishing (PPDP) aims to address. Among the available 

sanitization methods, differential privacy (DP) stands out for the strong privacy 

guarantees it offers. The fact that DP offers protection regardless of the side information 

available to intruders is very convenient in the current landscape (pervasive data 

collection and many untrusted data controllers). However, such strong guarantees have 

a downside: the information loss we incur when using DP is likely to be large. As a result, 

there is no standard methodology to generate DP data sets and the use of DP for PPDP is 

rather limited. In this work, we review the main approaches used in the generation of DP 

data sets (i.e., histograms, and record aggregation and masking), and describe the 

advantages and the limitations of each of these approaches in terms of computational 

cost and information loss. Next, we describe some of the strategies that have been 

proposed to mitigate the previously described limitations. Among these, we highlight two 

common strategies: to increase the privacy budget, and to use a relaxed version of DP. 

Using large privacy budgets is common; however, it has an important downside: DP itself 

becomes meaningless. Using relaxed versions of DP allows us reduce the information loss 

while keeping reduced but meaningful privacy guarantees.  

Reference to this paper should be made as follows:  

Soria-Comas, J. (2019) “Differentially Private Data Sets: Methods, Limitations and 

Mitigation Strategies”, Data, Privacy and the Individual. 

 

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0) License. To view a copy of the license, 

visit https://creativecommons.org/licenses/by-nc-sa/4.0/” 
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Differential privacy (DP, [5]) is well-known for the strong privacy guarantees it provides. 

One remarkable feature of DP is that its privacy guarantees hold regardless of the side 

knowledge available to attackers. This is very convenient in the current landscape: data 

collection is pervasive and it is unfeasible to make well-grounded assumptions about the 

side knowledge available to attackers. However, DP has been criticized for the 

information loss it implies [1, 16]. Such criticisms reveal that some simple data analyses 

that were usually considered safe (e.g. the publication of magnitude tables traditionally 

done by national statistical institutes) require a thorough masking under DP. There has 

been significant controversy around these criticisms, which is the result of two opposing 

views: those who favor utility over privacy (and disregard DP for being too strict, for 

instance, by not making assumptions about the side knowledge available to intruders) 

and those who favor privacy over utility (and claim that privacy must be guaranteed 

regardless of any drawbacks).  

DP was designed to protect data subjects’ privacy in database queries: the response to any 

query should be similar regardless of the presence or absence of any subject in the data 

set. The extent to which queries are allowed to differ is the privacy budget. We can spend 

the privacy budget in a single query or split it among several queries. 

The proposal of DP as a privacy definition for queries (rather than for data sets) was 

motivated by several results showing that, unless a thorough masking is done, the 

publication of data sets is likely to result in privacy breaches [4, 7] 

DP assumes the presence of a trusted party who holds the database and responds to the 

queries submitted by database users in a privacy-preserving manner. By limiting the 

protection to the queries posted by database users, the entire privacy budget can be spent 

on data analysis tasks that matter. However, there is an issue: once the privacy budget is 

exhausted, no more queries can be answered. If the number of queries that we expect is 

large, we may need to allocate a small privacy budget to each query, which reduces the 

accuracy of the responses. Some techniques have been proposed to mitigate this issue, 

such as the median mechanism [15] and the sparse vector technique [10]. However, these 

techniques offer only limited improvements. The generation of DP data sets remains the 

only option if we want to allow for unlimited data analysis. However, when generating 

DP data sets, we should keep in mind that accuracy guarantees are likely to be very limited 

[5]. 

The generation of DP data sets is conceptually simple: a DP data set is a DP response to a 

query whose outcome is the whole data set. In practice, the generation of DP data sets is 

complex because we not only want to enforce DP but also to incur in as small information 

loss as possible. To illustrate this point, let us consider a naive DP data set generation 

method that directly masks each record to make it DP. Since DP hides the presence or 

absence of any subject in the data set, each record must be thoroughly masked, leading 
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to a large information loss. To avoid this issue, the generation of DP data sets is based on 

queries whose result is mostly unaffected by the presence or absence of one record. 

However, even in the latter case, the generation of data sets with strict DP guarantees 

remains feasible only for low complexity data domains.  

Going back to the protection offered by DP, we notice that, in the scenario proposed by 

DP, data subjects are not protected from the data collector. Indeed, DP assumes that the 

data collector is trusted. This assumption comes in handy because it allows for simpler 

sanitization mechanisms that incur in less information loss. However, it is often 

unrealistic in the current landscape. Local DP is an alternative to DP that is capable of 

offering strong DP privacy guarantees in the presence of an untrusted data collector. In 

local DP, each data subject has to protect her data locally before submitting it to the 

untrusted data collector. Usually in local DP the masking is adjusted to the data analysis 

that will be performed afterwards. This makes local DP less flexible than plain DP. 

Alternatively, to allow for arbitrary data analysis tasks, we can generate a DP data set by 

processing the local DP data records received. However, local DP being more restrictive 

than plain DP, the range of available methods is narrower and, thus, the information loss 

higher.  

In this work, we review the main approaches used in the generation of DP data sets both 

in the presence of trusted and untrusted data collectors. We describe the limitations of 

each of these approaches in terms of computational cost and information loss. Next, we 

describe some strategies that have been used to deal with the previous limitations: the 

use of large privacy budgets (which makes DP meaningless) and the use of relaxations of 

DP (which allow us to reduce the information loss while keeping meaningful privacy 

guarantees).  

 

Differential privacy [5]  was originally proposed as a way to limit disclosure risk in 

database queries. In this setting, the differentially private sanitization mechanism sits 

between users submitting queries and the database controller answering them. To 

preserve the privacy of data subjects, the sanitization mechanism must guarantee that 

the impact that each data subject has on the query result is limited (according to an ϵ 

parameter).  

ϵ-Differential privacy. A randomized function κ gives ϵ-differential privacy (or ϵ-DP) if, 

for all data sets D1 and D2 that differ in one record (a.k.a. neighbor data sets), and all 

S ⊂ Range(κ), we have Pr(κ(D1) ∈ S) ≤ exp(ϵ)Pr(κ(D2) ∈ S).  
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Given a query f, the goal is to find a function κf that satisfies ϵ-DP and approximates f as 

closely as possible. The value of κf(D) is then returned as a privacy preserving replacement 

of f(D).  

A significant advantage of DP over alternative privacy models is that the protection 

offered by DP is independent of the side information available to intruders. This has made 

DP very popular among the research community. On the other hand, its deployment in 

real-world applications is rather limited. Except for a number of well-behaved 

applications (queries that are stable to the modification of one record), the impact of DP 

on the query responses may be large.  

The Laplace mechanism is the most common way to attain DP for numerical queries. It 

masks the query output by adding a random noise whose magnitude is proportional to 

the sensitivity of the query (that is, the maximum variability of the query result between 

neighbor data sets).  

Laplacian mechanism. Let f be a query function with values in ℝ. The randomized function 

κf = f + Laplace(0, (Δf)/(ϵ)),  where Δf = max∥f(D1) − f(D2)∥1 is the sensitivity of f, isϵ-DP.  

We consider a data set in which each record refers to a different data subject. 

Traditionally, privacy in data set releases has been tackled by the following two 

approaches:  

Anonymity. It should not be possible to link records in the released data set to a specific 

subject.  

Confidentiality. Access to the released data should not reveal confidential information 

about any specific subject.  

DP is formulated as a privacy model for database queries. As such, the privacy guarantees 

that it offers are, in principle, unrelated to anonymity and confidentiality: the probability 

of getting a specific DP data set must be similar between original data sets that differ in 

any one record. However, DP privacy guarantees are readily interpretable in terms of 

anonymity and confidentiality. DP weakens the link between subjects and records 

because the probability of any given DP data set is similar regardless of the presence or 

absence of any subject in the original data set. Similarly, DP weakens the link between 

subjects and their confidential data.  

The purpose of the GDPR is to protect data subjects by placing limits to the processing of 

their personal information. According to the GDPR, personal information is any 

information that concerns an identified or identifiable person. The GDPR is guided by 
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some general principles. Among them, it requires personal data to be collected only for 

specified, explicit and legitimate purposes and not further processed in a manner that is 

incompatible with those purposes. Moreover, the GDPR recognizes several rights that 

data subjects have over their data. For instance, data subjects have the right to access, 

rectify, and delete their data.  

The purpose of the GDPR is not to thwart data analysis but rather to make sure that data 

analysis is compatible with the privacy of data subjects. For this reason, the GDPR does 

not foreclose the execution of arbitrary data analysis tasks (other than the one that 

triggered the data collection). It rather describes the conditions under which such data 

analyses can be conducted.  

As the focus of the GDPR is on personal data, anonymization is the primary technique to 

fulfil its requirements. A piece of information is anonymous when it does not relate to an 

identified or identifiable natural person or when it has been transformed in such a 

manner that the data subject is not or no longer identifiable. However, contrary to other 

privacy regulations, the GDPR does not describe how the anonymization must be done. 

DP is one among a variety of approaches that can be used to anonymize data sets.  

Alternatively, the GDPR allows to carry out processing tasks on personal data for 

purposes other than those that triggered data collection provided that some conditions 

are met. Among these, further processing for statistical purposes is allowed provided that 

it is not incompatible with the purpose that triggered the data collection. By using DP to 

protect the results of data analyses we make sure that only statistical analyses return valid 

results: the noise required to attain DP in queries that concern a single individual is large, 

which makes the result unreliable.  

 

Although DP was initially proposed in a query-response setting, attempts to publish DP 

data sets (non-interactive setting) took place soon after its inception [11]. In the non-

interactive setting, the trusted data collector generates a DP data set and releases it. 

Then, data users can freely analyze the released data set.  

DP can handle data set releases seamlessly: a DP data set is simply a DP answer to a query 

that asks for the whole data set. However, in practice, the generation of utility preserving 

DP data sets is a complex topic. The main difficulty lays on finding a low sensitivity query 

that returns a good enough approximation of the original data set. Among the variety of 

methods that have been proposed for the generation of DP data sets, there are two main 

approaches: histograms [23, 24, 25], and record aggregation and masking [19, 17, 21, 20]. In 

this section, we describe them and explain their limitations.  
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Histograms are a common approach to generate DP data sets. Essentially, we partition 

the domain of the data set into a set of bins and give DP counts of the records contained 

within each of these bins. The motivation for using histograms is their low sensitivity: 

adding or removing a record from a data set changes the count of a single bin by one. 

Hence, adding a small amount of noise to the count of each bin suffices to attain 

differential privacy.  

Although attaining DP for a given histogram query is straightforward, the generation of 

DP data sets based on histograms presents significant difficulties. These are related to 

the information loss that results from approximating the original data set as a DP 

histogram. Let us describe the two sources of error:  

Partitioning error. Records that are different may belong to the same partition bin. Thus, 

by representing original records in terms of histogram bin, we lose some of the 

information in the records. The amount of information loss depends on the granularity 

of the set of bins.  

Error due to DP counts. To attain DP we need to mask the bin counts by adding some 

random noise.  

Ideally, we would like to minimize both types of error; however, this is not possible. To 

reduce the partitioning error, we have to increase the granularity of the bins. By doing so, 

we reduce the counts associated to bins, which in turn increases the impact of adding a 

fixed amount of noise to them.  

In the rest of this section, we describe some histogram-based methods to generate DP 

data sets and explain their limitations. Notice, however, that providing a comprehensive 

survey of them is beyond the scope of this work. More details can be found in [9].  Methods 

based on histograms can be broadly classified into two categories depending on the 

presence or absence of a target set of histogram bins. When a target set of bins is given 

beforehand, the focus goes solely into minimizing the error due to DP counts.  

Baseline method. This is the most basic method. It matches the generation of DP 

histograms previously described: it adds independent Laplace(1 ⁄ ϵ) distributed noise to 

the count of each partition set [5]. When using the baseline method, the absolute error in 

range queries (queries that ask for the sum of counts of all bins included in a given range 

of values) has order 𝒪(√𝑘), where k is the number of bins included in the given range. 

This makes the method appropriate only for small sets of bins.  

To avoid the error in the counts to grow as 𝒪(√𝑘), we need to reduce the number of bins 

that we need to aggregate to compute the count of a given range. Some of the approaches 

that have been proposed to address this issue are:  
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Hierarchical method [14]. Rather than computing a single histogram, the hierarchical 

method computes h histograms, each of them with a different granularity. At the top level 

of the hierarchy, we have a single bin that covers the whole data domain D. Each other 

level of the hierarchy is a refinement of the bin set in the previous level. DP counts are 

then computed for each of the bin sets in the hierarchy, and the counts combined to get 

a DP count for any given range query. The advantage of the hierarchical method is that 

(by combining partition sets from different levels), each range query can be answered 

based on no more than 2(b − 1)h partition sets, where b is the branching factor and h is the 

height of the tree. Assuming that the privacy budget is evenly distributed across all the 

partitions, the worst case absolute error has order O((logk)3 ⁄ 2). The previous description 

of the hierarchical method is based on a single attribute. Although it can be applied to 

data sets with an arbitrary number of attributes, the advantage of using it decreases as 

the number of dimensions increases. This is a major drawback as nowadays most data sets 

have a large number of attributes. 

Query selection method [2]. The purpose of this method is to generate a DP data set that 

is optimal in answering a given family of count queries. It starts with a prefixed (e.g. 

uniformly distributed) DP data set and selects the query whose result has the greatest 

deviation with respect to the actual data set. Then the DP data set is adjusted to the actual 

query result.  

When a target set of bins does not exist, the DP data set generation approach has to 

propose one. In the bin selection, we must account for both the partitioning error and the 

error due to DP counts. The most basic method is to partition the data domain into a set 

of equal sized bins that are independent of the data set. The main problem with this 

method is that dense and scarce regions of the data domain are equally treated. This is 

not optimal. In dense regions, we can afford smaller bins (which reduce the partitioning 

error) while still keeping a reasonable error due to the DP counts. On the contrary, in 

scarce regions, we must use coarser bins to keep the error associated to the DP counts 

within a reasonable level. Ideally, we would like to adjust the granularity of the bins to 

the actual data set. However, to satisfy differential privacy, any binning decision must be 

done in a differentially-private way. In general, this means that a part of the privacy 

budget must be used to define the partition and, consequently, less privacy budget can be 

spent in the DP counts.  

The use of histograms is appropriate for simple data sets (with few attributes and 

attribute domains limited to a small set of categorical values). In more complex data sets 

(such as those with moderate to large number of attributes that can be either categorical 

or continuous) the use of histograms presents severe limitations: for a fixed granularity 

in each attribute, the number of histogram bins grows exponentially with the number of 

attributes, which has a severe impact on both computational cost and accuracy. 

Computational issues derive from the fact that we have to compute and store the counts 

for a large number of bins. Accuracy issues result from having a large number of scarcely 
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populated bins. For instance, along the lines of [25], let us consider a data set with 1 

million records and 10 attributes, each of them with 10 possible values. The average count 

in each bin is 10−4, whereas the average absolute noise introduced by a Laplace noise to 

attain 𝜖 -DP for count queries is 1/𝜖 . For sensible values of 𝜖  (e.g. 𝜖 = 1 ), the error 

introduced in the count of each cell exceeds its actual value by a large margin, making 

the reported values meaningless. 

Some dimensionality reduction techniques, such as [25,23], have been proposed to 

mitigate the effect of the number of attributes, but gains are limited.  

Assume that, given a data set D, we want to generate Dϵ a ϵ-DP version of D. For each 

record r ∈ D, let Ir(D) be the query that returns r. We can think of the data set D as the 

collected answers to the queries Ir(D) for r ∈ D, and we can generate Dϵ by collecting ϵ-DP 

responses to Ir(D) for r ∈ D. Such a naive procedure to generate a DP data necessarily leads 

to a large information loss: the purpose of DP is to make sure that individual records do 

not have any significant effect on query responses, which means that the accuracy of the 

responses to Ir(D) must necessarily be low.  

To make perturbative masking viable for the generation of the DP data set, we have to 

reduce the sensitivity of the queries used. We need a shift from Ir to queries that ask for 

aggregated or statistical information. As the latter queries depend on several records, 

they are more stable to changes in one record. In DP terms, they are less sensitive and, 

thus, less masking is needed to attain DP.  

In this section, we describe several methods that use microaggregation. 

Microaggregation [3] is a well-known technique for controlling disclosure risk in data set 

releases that works in two stages:  

First, the set of records in a data set is clustered in such a way that: i) each cluster contains 

at least k records; ii) records within a cluster are as similar as possible.  

Second, each record within each cluster is replaced by a representative of the cluster, 

typically the average record.  

This line of work was started in [19]. Queries Ir were replaced by Ir○M, where M is a 

microaggregation algorithm. The introduction of the microaggregation functions has two 

effects on the accuracy. On the one hand, there is an approximation error that results 

from replacing Ir by Ir○M. On the other hand, Ir○M has reduced sensitivity, which lowers 

the amount of noise required to attain DP. For this approach to pay off the reduction in 

the noise required to attain DP must compensate the error due to microaggregation. In 

general, we observe the following trends: when the cluster size is small, increasing it 

yields a significant reduction in the sensitivity at the cost of a small increase in the 
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microaggregation error; when the cluster size is large, increasing it barely reduces the 

sensitivity, while the microaggregation error continues to increase.  

Contrary to histogram-based approaches, the previously described microaggregation 

approach does not have computational time and space issues when the number of 

attributes grows. However, it is a well-known fact that clustering algorithms have a poor 

behavior when the number of attributes grows: for a large number of attributes, all the 

points tend to be far apart from each other, which leads to a poor set of clusters.  

In the absence of a trusted party, data subjects must mask their data themselves before 

submitting it to the data collector. As each record is very sensitive, a thorough masking 

must be applied. Thus, if data collector merely collects masked records, the information 

loss in the resulting data set will be large. To mitigate this issue, the masking must be 

done in a way that allows the data collector to get a more accurate estimate the 

distribution of the original data.  

Randomized response is used in [8] to generate local DP data sets. Randomized 

response [22] is a mechanism that respondents to a survey can use to protect their privacy 

when asked about the value of sensitive attribute (e.g. did you take drugs last month?). 

The interesting point is that the data collector can still estimate the empirical distribution 

of the true answers of the respondents from the randomized responses. Randomized 

response is usually applied on each attribute independently. However, by doing so the 

relation between attributes is lost. [8] proposes a mechanism to give estimates of the 

marginal distributions of each attribute while keeping the residual dependency attributes 

that is present in the randomized data set.  

For PPDP to make sense, we should be able to get valid statistical results out of the 

protected data set. With current DP data generation techniques, this is feasible only for 

simple data sets (few attributes with few categories). It is unclear if further research in 

DP will allow us to tackle complex data sets effectively. In this section, we describe some 

methods to generate DP-like data sets that are capable of dealing with more complex data 

sets. The approach in all these methods is the same: relax the privacy guarantees in 

exchange for reduced information loss.  

ϵ

When using DP, we need to fix the privacy budget ϵ, which determines the level of 

protection that we get. Ideally, ϵ should be small. Values such as 0.1, ln2, or even 1 are 
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considered safe. In practice, the values of ϵ used to generate DP data sets are usually much 

larger.  

As a paradigmatic case, we discuss the use of DP in Apple. It is known that most software 

companies collect and analyze data from their customers, and it is also known that some 

customers may not feel confident with that practice. To reassure customers, Apple claims 

that they protect privacy by using DP. However, to keep the utility of the data, they are 

forced to use large values forϵ. The actual ϵ used depends on the particular system. In iOS 

10, researchers have found out there is a daily ϵ of 14. Such a value is so large that DP 

become meaningless. In DP terms, ϵ = 14 means that the inclusion of a single record in the 

data set can change the probability of the output of a given analysis task by 1,200,000. 

Moreover, such ϵ is a daily budget. It becomes 28 after two days, 42 after three days, and 

so on.  

It would be easy to claim that Apple fails to provide any privacy protection. However, we 

should differentiate between the theoretical privacy guarantees (which are lacking) and 

the real privacy protection. DP is a worst case privacy model: privacy will be protected 

even if the attacker knows everything except the record associated to the a target data 

subject. To protect data subjects against such a strong attacker, the collected data must 

be thoroughly masked, even for large privacy budget. Thus, for the most common case of 

not so strong attackers, privacy is likely to be well protected. Having said this, we would 

like to remark that using a large ϵ to keep the utility of the data seems an inappropriate 

way to proceed. To get meaningful privacy guarantees, it is better to target another 

privacy model that is compatible with our data utility requirements.  

PPDP becomes increasingly difficult when the number of attributes grows. Although we 

focus on DP, this is also the case in other privacy models that seek to offer protection at 

the record level. In DP terms, this is easily understandable by recalling that DP limits the 

amount of information that is revealed about each data subject. Therefore, if the number 

of attributes grows, the amount of information that can be revealed about each attribute 

is reduced.  

Although this problem is unavoidable, there have been some attempts to mitigate it. In 

Section 3.1↑, we discussed some methods that aim at increasing the accuracy of DP 

histograms by reducing the dimensionality. In this section, we focus on the method 

described in the work by Domingo-Ferrer et al. [8], which deals with dimensionality 

reduction in the context of record-masking based DP data sets. A peculiarity of this 

method is that it makes some interesting observations about the privacy risks associated 

to data set transformations to avoid the need of applying DP in the dimensionality 

reduction steps. Strictly speaking this method is not DP; however, the rationale 

underlying it seems convincing enough.  
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The proposed method is based on principal component analysis (PCA). PCA uses an 

orthogonal transformation to convert a set of observations of possibly correlated 

attributes into a set of values of linearly uncorrelated attributes called principal 

components. This transformation is defined in such a way that principal components are 

ordered by descending variance. That is, the first principal component accounts for as 

much of the variability in the data as possible, and each succeeding component in turn 

accounts for as much of the variability in the data as possible under the constraint that it 

is orthogonal to the preceding components. Using this representation of the data, 

dimensionality reduction is very simple. We just have to drop some principal components 

starting from the last one (which is the least informative one).  

If we want strict DP, the PCA transformation should be done in a DP way. However, to 

avoid spending a part of the privacy budget in the PCA transformation, [8] argues that 

there is no need to make the principal components DP. The reason is that PCA is used as 

an internal transformation that is undone before releasing any data. As the principals 

components are not released, we don’t face the risk associated to them.  

The advantage of the reduced data set is that it has less attributes, which allows us to 

reduce the amount of masking required to attain DP. Of course, the dimensionality 

reduction steps incur in some information loss, but this cost is expected to be smaller 

than the gain that results from the reduced making.  

When the number of attributes becomes large, dimensionality reduction techniques 

become ineffective. One paradigmatic case is that of collaborative filtering (CF) 

recommender systems. Such systems are used to recommend items to a subject based on 

her preferences and on the preferences of similar subjects. CF needs to store the known 

preferences for the target set of users and items. Thus, the amount of attributes stored 

about each subject is really large (one attribute for each of the target items). Although 

dimensionality reduction techniques are employed in collaborative filtering, they are 

insufficient to make DP feasible.  

The well-known work by McSherry and Mironov [12] on DP collaborative filtering uses the 

following relaxation of DP. Rather that enforcing ϵ-DP at the record level, the goal is to 

enforce ϵ-DP at the attribute level. That is, for a given subject, her preferences about any 

given item are ϵ-DP. This is not ϵ-DP at the record level, but rather ϵm-DP, where m is the 

number of attributes in the data set. Obviously, as m is likely to be large, the protection 

of DP at the record level is meaningless.  

The aggregation and masking approach to generate DP data sets fails when the number 

of attributes is large. The reason is that, as the number of attributes grows, the distance 
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between records increases. This limits our ability to conduct a meaningful record 

aggregation, which is at the heart of the aggregation and masking approach.  

To be able to use microaggregation when the number of attributes is large, [20] proposes 

to work independently with each attribute. That is, we get a DP version of each attribute 

by microaggregating and masking it. Then attributes are put together to generate the DP 

data set. However, this approach has a caveat: it requires us to switch the target of 

protection from the original data set D to the microaggregated data set D’. In other words, 

given the original data set D, we generate a microaggregated version D’. Once we have D’, 

we discard D and focus on the generation of a DP version of D’. This approach departs 

from DP. The rationale underlying it is that, as D’ contains less information than D, a DP 

version of D’ should be safe.  

The literature is full of relaxations of DP. All these relaxations seek to reduce the 

information loss by lowering the privacy guarantees that subjects receive. Although they 

are general relaxations that do not target PPDP, they can be applied to data set releases.  

(ϵ, δ)-indistinguishability [13], which allows some additional margin δ to the requirements 

in DP.  

(ϵ, δ)-probabilistic differential privacy [11], which allows DP conditions to be broken with 

probability δ. In other words, the probability that the adversary gains significant 

information about an individual is, at most, δ.  

(μ, τ)-concentrated differential [6], which, similarly to the previous case, allows DP 

conditions to be broken with a probability that is determined by μ and τ.  

ϵ-individual differential privacy [18], which relaxes DP by limiting the privacy guarantees 

to the actual data set (rather than guaranteeing that DP guarantees hold for any arbitrary 

data set that can be completely unrelated to the actual data set).  

 

 

DP is recognized for the strong privacy guarantees that it provides. It was formulated in 

a query-response scenario, but sticking to such a scenario is problematic because it limits 

the amount of data analyses that can be run on the data. Each data analysis consumes a 

part of the available privacy budget ϵ; when the privacy budget is exhausted no more data 

analyses are possible. To avoid this limitation, we generate a DP data set, which can be 

subsequently analyzed without further restrictions.  

The generation of DP data set is a complex topic. It is feasible to generate accurate DP 

data sets when the data domain is simple (e.g. a small number of categorical attributes, 
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each of them with a small number of categories). Additionally, some techniques have 

been proposed that allow us to deal effectively with slightly more complex data sets (e.g. 

a moderate number of attributes). However, existent techniques fail when the complexity 

of the data set grows. Either because the computational cost becomes large or because 

the information loss grows significantly.  

To be able to generate DP-like data set for more complex data domains, some relaxations 

of DP have been proposed. In Section 5↑, we describe some of them: to increase the 

privacy budget, to apply dimensionality reduction techniques, to apply DP at the attribute 

level and to protect an alternative data set, among others.  
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